97,426 research outputs found

    On-line parsing of hand-printed mathematical expressions Final report for phase 2

    Get PDF
    Computer program for analyzing hand printed mathematical expression

    The Great Albatross Philippine Expedition and Its Fishes

    Get PDF
    The Philippine Expedition of 1907-10 was the longest and most extensive assignment of the Albatross's 39-year career. It came about because the United States had acquired the Philippines following the Spanish-American War of 1898 and the bloody Philippine Insurection of 1899-1902. The purpose of the expedition was to surbey and assess the aquatic resources of the Philippine Islands. Dr. Hugh M. Smith, the Deputy Commissioner of the U.S. Bureau of Fisheries, was the Director of the Expedition. Other scientific participants were Frederick M. Chamberlain, Lewis Radcliffe, Paul Bartsch, Harry C. Fasset, Clarence Wells, Albert Burrows, Alvin Seale, and Roy Chapman Andrews. The expedition consisted of a series of cruises, each beginning and ending in Manila and exploring a different part of the island group. In addition to the Philippines proper, the ship also explored parts of the Dutch East Indies and areas around Hong Kong and Taiwan. The expedition returned great quantities of fish and invertebrate speciments as well as hydrographic and fisheries data; most of the material was eventually deposited in the Smithsonian Institution's National Museum of Natural History. The fisehs were formally accessioned into the museum in 1922 and fell under the car of Barton A. Bean, Assistant Curator of Fishes, who then recruited Henry W. Fowler to work up the material. Fowler completed his studies of the entire collection, but only part of it was ever published, due in part to the economic constraints caused by the Depression. The material from the Philippine Expedition constituted the largest single accession of fishes ever received by the museum. These speciments are in good condition today and are still being used in scientific research

    Compression failure mechanisms in unidirectional composites

    Get PDF
    Compression failure mechanisms in unidirectional composites were examined. Possible failure modes of constituent materials are summarized and analytical models for fiber microbuckling are reviewed from a unified viewpoint. Due to deficiencies in available models, a failure model based on nonlinear properties and initial fiber curvature is proposed. The effect of constituent properties on composite compression behavior was experimentally investigated using two different graphite fibers and four different epoxy resins. The predominant microscopic scale failure mode was found to be shear crippling. In a soft resin, shear crippling was in the form of buckling of fibers on a microscopic scale. However, stiff resins failure was characterized by the formation of a kink band. For unidirectional laminates, compressive strength, and compressive modulus to a less extent, were found to increase with increasing magnitude of resin modulus. The change in compressive strength with resin modulus was predicted using the proposed nonlinear model

    Improving LLR Tests of Gravitational Theory

    Full text link
    Accurate analysis of precision ranges to the Moon has provided several tests of gravitational theory including the Equivalence Principle, geodetic precession, parameterized post-Newtonian (PPN) parameters γ\gamma and β\beta, and the constancy of the gravitational constant {\it G}. Since the beginning of the experiment in 1969, the uncertainties of these tests have decreased considerably as data accuracies have improved and data time span has lengthened. We are exploring the modeling improvements necessary to proceed from cm to mm range accuracies enabled by the new Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) currently under development in New Mexico. This facility will be able to make a significant contribution to the solar system tests of fundamental and gravitational physics. In particular, the Weak and Strong Equivalence Principle tests would have a sensitivity approaching 10−14^{-14}, yielding sensitivity for the SEP violation parameter η\eta of ∼3×10−5\sim 3\times 10^{-5}, v2/c2v^2/c^2 general relativistic effects would be tested to better than 0.1%, and measurements of the relative change in the gravitational constant, G˙/G\dot{G}/G, would be ∼0.1\sim0.1% the inverse age of the universe. Having this expected accuracy in mind, we discusses the current techniques, methods and existing physical models used to process the LLR data. We also identify the challenges for modeling and data analysis that the LLR community faces today in order to take full advantage of the new APOLLO ranging station.Comment: 15 pages, 3 figures, talk presented at 2003 NASA/JPL Workshop on Fundamental Physics in Space, April 14-16, 2003, Oxnard, C

    Progress in Lunar Laser Ranging Tests of Relativistic Gravity

    Full text link
    Analyses of laser ranges to the Moon provide increasingly stringent limits on any violation of the Equivalence Principle (EP); they also enable several very accurate tests of relativistic gravity. We report the results of our recent analysis of Lunar Laser Ranging (LLR) data giving an EP test of \Delta (M_G/M_I)_{EP} =(-1.0 +/- 1.4) x 10^{-13}. This result yields a Strong Equivalence Principle (SEP) test of \Delta (M_G/M_I)_{SEP} =(-2.0 +/- 2.0) x 10^{-13}. Also, the corresponding SEP violation parameter \eta is (4.4 +/- 4.5) x 10^{-4}, where \eta=4\beta-\gamma-3 and both \beta and \gamma are parametrized post-Newtonian (PPN) parameters. Using the recent Cassini result for the parameter \gamma, PPN parameter \beta is determined to be \beta-1=(1.2 +/- 1.1) x 10^{-4}. The geodetic precession test, expressed as a relative deviation from general relativity, is K_{gp}=-0.0019 +/- 0.0064. The search for a time variation in the gravitational constant results in \dot G/G=(4 +/- 9) x 10^{-13} yr^{-1}, consequently there is no evidence for local (~1AU) scale expansion of the solar system.Comment: 4 pages, revtex4, minor changes made for publicatio

    Charge Detection in Phosphorus-doped Silicon Double Quantum Dots

    Full text link
    We report charge detection in degenerately phosphorus-doped silicon double quantum dots (DQD) electrically connected to an electron reservoir. The sensing device is a single electron transistor (SET) patterned in close proximity to the DQD. Measurements performed at 4.2K show step-like behaviour and shifts of the Coulomb Blockade oscillations in the detector's current as the reservoir's potential is swept. By means of a classical capacitance model, we demonstrate that the observed features can be used to detect single-electron tunnelling from, to and within the DQD, as well as to reveal the DQD charge occupancy.Comment: 4 pages, 3 figure

    Comparison of toughened composite laminates using NASA standard damage tolerance tests

    Get PDF
    The proposed application of composite materials to transport wing and fuselage structures prompted the search for tougher materials having improved resistance to impact damage and delamination. Several resin/graphite fiber composite materials were subjected to standard damage tolerance tests and the results were compared to ascertain which materials have superior toughness. In addition, test results from various company and NASA laboratories were compared for repeatability
    • …
    corecore